developed Privately

Privately Developed Moon Lander Model Arrives at NASA for Testing – VOA Learning English

A full-size model of a privately-developed moon lander has arrived at the U.S. space agency NASA for examination and testing.

The model, also known as a mock-up, stands more than 12 meters high. The design represents one of three lunar landers being developed for NASA by three different companies.

The mock-up was recently sent to NASA’s Johnson Space Center in Houston, Texas. Blue Origin, a Washington state-based space flight company, produced it.

NASA announced earlier this year it had chosen three American businesses to develop, build and fly lunar landers for future missions to the moon. The other two companies are California’s SpaceX and Dynetics of Alabama.

SpaceX made history in May by launching two astronauts into space aboard a spacecraft the company built and operated for NASA. It was the first time astronauts had launched from American soil since the last space shuttle flight in 2011.

Altogether, NASA has agreed to pay the three companies $967 million to design and develop human landing systems for its Artemis program. The goal of Artemis is to return astronauts to the moon in 2024, NASA officials have said.

The space agency’s next goal is to establish a long-term base on the moon by 2028. From there, NASA says it hopes to launch a series of space operations, including missions to Mars.

Blue Origin’s model is not a working version of the lander. But it does include full elements designed to give NASA engineers an up-close look at the landing system.

One of the main goals of the mock-up operation will be to test how effectively the lunar lander can get crew, equipment and supplies on and off of the vehicle, Blue Origin said in a statement. It will also be a chance for astronauts to examine the equipment and provide their feedback on the design.

Shown is an artist's concept of a Blue Origin commercial lunar lander on the Moon. Blue Origin was one of five companies announced on Nov. 18, 2src19, as taking part in NASA’s Commercial Lunar Payload Services or CLPS initiative. (Image Credit: Blue Origin

Shown is an artist’s concept of a Blue Origin commercial lunar lander on the Moon. Blue Origin was one of five companies announced on Nov. 18, 2019, as taking part in NASA’s Commercial Lunar Payload Services or CLPS initiative. (Image Credit: Blue Origin

Blue Origin formed a “National Team” with other companies to work on the lunar lander project. The team includes Lockheed Martin, Northrop Grumman and Draper.

The system is based on three main parts: the Ascent Element, the Descent Element and the Transfer Element.

Lockheed Martin is designing the Ascent Element, where the crew would be housed during moon missions. The Descent Element, developed by Blue Origin, would carry the astronauts to the surface of the moon. The Transfer Element, designed by Northrop Grumman, links up with the lander and would guide the crew through low lunar orbit in preparation for landing.

Leaders of the National Team say they decided to create the three lander components to speed up the design and development process. This method permits the team to carry out independent development and testing of individual elements, without affecting the full system, Blue Origin said.

Both the Ascent Element and the Descent Element were sent to NASA for examination and testing.

Brent Sherwood is vice president of Advanced Development Programs for Blue Origin. “Testing this engineering mock-up for crew interaction is a step toward making this historic mission real,” he said in a statement.

He noted the importance of receiving NASA’s expertise and feedback on Blue Origin’s design as early as possible to help improve the overall development progress. “The learning we get from full-scale mock-ups can’t be done any other way,” Sherwood added.

I’m Bryan Lynn.

Bryan Lynn wrote this story for VOA Learning English, based on reports from Blue Origin and NASA. Caty Weaver was the editor.

We want to hear from you. Write to us in the Comments section, and visit our Facebook page.

Quiz – Privately-Developed Moon Lander Model Arrives at NASA for Testing

Quiz - Privately-Developed Moon Lander Model Arrives at NASA for Testing

Start the Quiz to find out


Words in This Story

mission n. an important task, usually involving travel somewhere

feedback n. helpful information or criticism that is given to someone to say what can be done to improve a performance or product

component n. one of the parts of something, especially a machine

full-scale adj. very large or serious and involving everything that is possible or expected

Read More

developed Hemsworth

Liam Hemsworth has developed a ‘low opinion’ of his ex Miley Cyrus since they separated a year ago – Daily Mail

Liam Hemsworth ‘has a low opinion’ of ex-wife Miley Cyrus following their split one year ago… as singer continues to dish on their relationship

By Brian Marks For

Published: | Updated:

Liam Hemsworth‘s estimation of his ex-wife Miley Cyrus has reportedly dropped precipitously since their turbulent split one year ago.

The 30-year-old Hunger Games star has developed a ‘low opinion’ of the 27-year-old singer after she appeared to move on quickly following their separation, according to Us Weekly.

‘Liam kind of has a low opinion of Miley at this point,’ a source told the publication. ‘He was really hurt by their split.’  

Not a fan: Liam Hemsworth, 30, developed a ‘low opinion’ of Miley Cyrus due to how she handled their August 2019 split and her rebounds, according to Us Weekly; shown in June 2019

Sources close to the actor say the speed with which Miley started new relationships with Kaitlynn Carter and Cody Simpson left him hurt.

‘Miley and Liam haven’t talked much since their divorce. Liam was hurt by Miley moving on with new love interests shortly after they broke up,’ they continued.

Representatives for the Wrecking Ball singer revealed the separation on August 10, 2019, though they couple had reportedly been separated for months before that.

But she was photographed kissing Kaitlynn, who had just separated from Brody Jenner, on August 9, and the photos went public the following day to accompany the separation announcement.

According to Page Six, Liam was blindsided by the separation announcement, which was announced while he was in Australia.

Hurt feelings: ‘Liam kind of has a low opinion of Miley at this point,’ a source said. ‘He was really hurt by their split’; pictured in May 2019

Too fast for him: ‘Liam was hurt by Miley moving on with new love interests shortly after they broke up,’ they continued. She was pictured kissing Kaitlynn Carter a day before announcing the separation; pictured in February

Sources close to him also claimed he had been trying to resuscitate the marriage, though the announcement ended any hopes of a reconciliation, and he filed for divorce on August 21.

Since the split, Liam has called on his brothers Chris and Luke Hemsworth for comfort.

‘[He] has had the support of his family to help him move on,’ the insider continued. ‘Liam has been trying to be as private as possible and respectful about their relationship and breakup, and it’s a shame to him and his family that certain aspects about his and Miley’s relationship have been made public. 

‘He’s a very traditional and good guy and was very hurt by the way specific instances played out in front of the world.’

Liam is currently dating the model Gabriella Brooks, and he previously dated actress Madison Brown in late 2019.

The beginning: Miley and Liam first met and struck up a relationship while filming the 2010 romance The Last Song, based on the novel of the same name by Nicholas Sparks

On Thursday’s episode of Barstool Sports’ Call Her Daddy podcast, Miley said that her divorce from Liam ‘felt like a death.’

‘I had a very public, very big breakup that was over a 10-year span of a relationship…’ she told the host, Alexandra Cooper. ‘It’s like a death when you lose a love that deep. It feels like a death.’

Adding to the emotional pain was the constant reminder of the failed relationship.

‘Honestly, sometimes [death] even feels easier because [with a breakup] the person is still walking on the earth,’ she continued.

Miley and Liam first met and struck up a relationship while filming the 2010 romance The Last Song, based on the novel of the same name by Nicholas Sparks.

Following the separation and her fling with Kaitlynn in August and September, Miley struck up a relationship with the Australian singer Cody Simpson.

However, earlier this week the singer confirmed the two have now broken up.

Splitsville: The revelations about Liam’s mindset come amid revealing interviews about his marriage from Miley and news that she and singer Cody Simpson broke up this week 

Read More

developed engineers

How NASA engineers developed a ventilator for COVID-19 patients in just a month – The Verge

Working as an engineer at NASA’s Jet Propulsion Laboratory, David Van Buren usually spends his time designing and building instruments for space telescopes or robots that will explore other worlds in our Solar System. But for the last month, Van Buren and a group of his colleagues at JPL have been working on a project that is truly unexplored terrain for them: making a ventilator to help patients sick with COVID-19.

While Van Buren had some previous experience in medical engineering, he’d never designed a ventilator before. But he and his co-workers at JPL are used to making things they don’t have any experience making. In fact, they’re used to making things that no one has experience making.

“When a scientist comes to us and says they want to go to a moon of Jupiter and drill into the ice and see what’s underneath, that’s something that’s never been done before,” Van Buren tells The Verge. “We’re used to looking at new problems — things people haven’t done before or at least that we haven’t done before — and figuring out how to do them.”

After a whirlwind 37 days of research, planning, and tinkering, a subset of engineers at JPL have created a prototype they’re calling the VITAL ventilator. A white digital box with a breathing tube attached, the ventilator is somewhere between the sophisticated high-end ventilators that the sickest patients need and a simple ambulatory bag that can be used as a temporary measure to quickly squeeze air into the lungs. The team didn’t want to interfere with the production of the more critical ventilators, so the VITAL ventilator is meant for the patients who still need breathing support but are not in the most dire conditions. It’s a temporary tool designed to last just three to four months in a hospital.

VITAL is tailored specifically for people with COVID-19, which helped to guide its design. “It’s pared down in all the things that it can do, to just retain those functions needed for COVID-19 patients,” says Van Buren.

The VITAL ventilator.
Image: NASA

Throughout January and February, Van Buren had been following the news about the spread of COVID-19 in China with growing concern. Pandemics have been on his mind ever since the outbreak of H1N1 in 2009 when his daughter had to be hospitalized because of the new flu strain.

When it became clear in early March that there was community spread of COVID-19 in Washington and California, Van Buren really started focusing on what he could do to help. Early models suggested that hospitals would not have enough capacity or equipment to handle the influx of COVID-19 patients. Van Buren figured JPL could be an asset in the fight. One day, he bumped into Rob Manning, JPL’s chief engineer, in the center’s cafeteria, and they started talking about what they could do. “We both had been thinking, given the circumstances, maybe the projects that we were spending our time on might not be the most important things we could be doing, given what we both recognized was about to happen,” Van Buren says.

Manning found money to form a small team, and the project kicked off on March 16th. The group contacted a pulmonologist named Michael Gurevitch who’s been working on ventilators for decades. He came in and told the team the exact requirements that were needed for ventilators, while a JPL employee took detailed notes on a giant whiteboard.

“We more or less applied the pattern we apply when we build an instrument to land on Mars and, say, drill through the surface and take measurements of what’s down below,” says Van Buren. “We engage with scientists. In this case, we engaged with the clinicians as to what exactly is needed, so that we can then engineer an instrument — or in this case, a ventilator.”

Eventually, other people at JPL joined the project, including Michelle Easter. Normally, she works on mechanisms known as actuators. These motors are used to deploy or rotate instruments like solar panels during a mission.

“Actuators are often a combination of mechanisms and electronics,” Easter tells The Verge. “And that’s exactly what the VITAL device is; it’s a mechanism that’s controlled by embedded electronics, and that type of design is something super comfortable for me.”

To make VITAL, the team tried to use as many common, off-the-shelf parts as possible, such as tubing, motors, valves, and electronics displays. That way, anyone manufacturing the device in the future wouldn’t need to special order anything needed for a more sophisticated ventilator. The team found that companies and vendors were eager to help provide supplies that could be scalable. And when they didn’t have what JPL needed, they gave them references.

“Companies were just opening up their Rolodexes and giving us the names of their competitors,” says Easter, “which is not what you think for a business mindset. But people threw all of the traditional competition out the window.”

Eventually, the team settled on the final VITAL design. Because the machine is tailored for COVID-19 patients, it’s focused on providing air delicately to stiff lungs — a hallmark symptom of the virus. Stiff lungs have a harder time expanding, so patients struggle to get enough air to breathe. VITAL is meant to provide enough air pressure to patients to inflate their lungs but not so much so that the lungs over-expand. The machine also works to ensure the lungs don’t completely deflate, either. COVID-19 patients have lung damage that makes the sides of their lungs inflamed and sticky. If all the air goes out of their lungs and the sides touch each other, they might stick together and make it even harder to open back up again. So VITAL tries to keep the lungs slightly inflated whenever patients exhale.

JPL is equipped with various test facilities, such as a giant vacuum chamber used to subject spacecraft to extreme environments.
Image: NASA

Now that the team has a working prototype, they’ve moved on to environmental testing with the device. Whenever NASA sends a spacecraft to another world, each vehicle must be subjected to extreme conditions — such as wide-ranging temperatures, intense vibrations, loud sounds, and more — to see if it can withstand the harsh environment of space. Many of those same tests are needed to qualify medical equipment, too, and JPL has the facilities to run them, including a giant vacuum chamber and setups to shake hardware rigorously.

“We build spacecraft not medical devices, but there are so many similar elements, because they both have to be extremely high reliability systems — for different reasons,” says Easter. “For spacecraft, once you put it up in space, you will never be able to go and fix it. So we have to verify that it’s absolutely perfect and works exactly as we expect in all conditions. Then, of course, for the medical devices, we’re connecting this to a human; we have to verify that we’re not going to hurt a person. They’re both very, very important.”

Since the Food and Drug Administration is encouraging organizations to create new devices quickly to combat COVID-19, many of the tests usually required to certify equipment are no longer needed. But JPL still has to do elevation testing with VITAL to see if the machine will work in places like Denver, for instance. They also need to do electromagnetic interference testing, which will determine if VITAL can operate normally if someone is, say, talking on a cellphone nearby.

While the final round of testing is being completed, JPL is awaiting word from the FDA on whether VITAL will receive an emergency use authorization. Once they get approval, the team will then send the design off to companies that can produce VITAL en masse and deliver the ventilators to hospitals in need. “We don’t do production,” says Van Buren. “We do make one or two of a kind, and we send them off to Mars or Saturn or somewhere. And so we have engaged a couple of companies to help us understand the mass production aspects.”

It’s unclear how the team will proceed when the VITAL ventilator is shipped out into the world. Many of the people on the team put their normal projects on pause to get this ventilator ready as soon as possible. They’ll likely go back to designing interplanetary space probes very soon, but they’ve been buoyed by their brief stint in the medical world.

“I think everybody on the team is just so grateful that we have something positive to contribute in our brainpower and our teamwork,” says Easter. “It definitely helps us to feel empowered in an otherwise powerless kind of situation.”

Read More