- 1.
Hublin, J.-J. The modern human colonization of western Eurasia: when and where? Quat. Sci. Rev. 118, 194–210 (2015).
- 2.
Kuhn, S. L. & Zwyns, N. Rethinking the initial Upper Paleolithic. Quat. Int. 347, 29–38 (2014).
- 3.
Fewlass, H. et al. A 14C chronology for the Middle to Upper Palaeolithic transition at Bacho Kiro cave, Bulgaria. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-020-1136-3 (2020).
- 4.
White, R. Personal ornaments from the Grotte du Renne at Arcy-sur-Cure. Athena Review 2, 41–46 (2001).
- 5.
Welker, F. et al. Palaeoproteomic evidence identifies archaic hominins associated with the Châtelperronian at the Grotte du Renne. Proc. Natl Acad. Sci. USA 113, 11162–11167 (2016).
- 6.
Hublin, J.-J. et al. Radiocarbon dates from the Grotte du Renne and Saint-Césaire support a Neandertal origin for the Châtelperronian. Proc. Natl Acad. Sci. USA 109, 18743–18748 (2012).
- 7.
Hublin, J.-J., Spoor, F., Braun, M., Zonneveld, F. & Condemi, S. A late Neanderthal associated with Upper Palaeolithic artefacts. Nature 381, 224–226 (1996).
- 8.
Ruebens, K., McPherron, S. J. P. & Hublin, J.-J. On the local Mousterian origin of the Châtelperronian: integrating typo-technological, chronostratigraphic and contextual data. J. Hum. Evol. 86, 55–91 (2015).
- 9.
Higham, T. et al. The earliest evidence for anatomically modern humans in northwestern Europe. Nature 479, 521–524 (2011).
- 10.
Benazzi, S. et al. Early dispersal of modern humans in Europe and implications for Neanderthal behaviour. Nature 479, 525–528 (2011).
- 11.
White, M. & Pettitt, P. Ancient digs and modern myths: the age and context of the Kent’s Cavern 4 maxilla and the earliest Homo sapiens specimens in Europe. Eur. J. Archaeol. 15, 392–420 (2012).
- 12.
Zilhão, J., Banks, W. E., d’Errico, F. & Gioia, P. Analysis of site formation and assemblage integrity does not support attribution of the Uluzzian to modern humans at Grotta del Cavallo. PLoS ONE 10, e0131181 (2015).
- 13.
Kozłowski, J. K. Excavation in the Bacho Kiro Cave (Bulgaria): Final Report. 172 (Panstwowe Wydawnictwo Naukowe, 1982).
- 14.
Hedges, R. E. M., Housley, R. A., Bronk Ramsey, C. & Klinken, G. J. V. Radiocarbon dates from the Oxford AMS system: archaeometry datelist 18. Archaeometry 36, 337–374 (1994).
- 15.
Tsanova, T. & Bordes, J. G. in The Humanized Mineral World: Towards Social and Symbolic Evaluation of Prehistoric Technologies in South Eastern Europe (Proceedings of the ESF Workshop) (eds Tsonev, T. S. & Montagnari Kokclj, E.) 41–50 (ERAUL, 2003).
- 16.
Bailey, S. E. A closer look at Neanderthal postcanine dental morphology: the mandibular dentition. Anat. Rec. 269, 148–156 (2002).
- 17.
Bailey, S. E., Skinner, M. M. & Hublin, J.-J. What lies beneath? An evaluation of lower molar trigonid crest patterns based on both dentine and enamel expression. Am. J. Phys. Anthropol. 145, 505–518 (2011).
- 18.
Keith, A. Problems relating to the teeth of the earlier forms of prehistoric man. Proc. R. Soc. Med. 6, 103–124 (1913).
- 19.
Shaw, J. The Teeth, the Bony Palate and the Mandible in Bantu Races of South Africa (Bale and Danielsson, London, 1938).
- 20.
Kallay, J. in Dental Anthropology (ed. Brothwell, D.) 75–86 (Pergamon, 1963).
- 21.
Buckley, M., Collins, M., Thomas-Oates, J. & Wilson, J. C. Species identification by analysis of bone collagen using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 23, 3843–3854 (2009).
- 22.
Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758–15763 (2013).
- 23.
Korlević, P. et al. Reducing microbial and human contamination in DNA extractions from ancient bones and teeth. Biotechniques 59, 87–93 (2015).
- 24.
Gansauge, M.-T. et al. Single-stranded DNA library preparation from highly degraded DNA using T4 DNA ligase. Nucleic Acids Res. 45, e79 (2017).
- 25.
Fu, Q. et al. DNA analysis of an early modern human from Tianyuan Cave, China. Proc. Natl Acad. Sci. USA 110, 2223–2227 (2013).
- 26.
Lippold, S. et al. Human paternal and maternal demographic histories: insights from high-resolution Y chromosome and mtDNA sequences. Investig. Genet. 5, 13 (2014).
- 27.
Kivisild, T. Maternal ancestry and population history from whole mitochondrial genomes. Investig. Genet. 6, 3 (2015).
- 28.
Fu, Q. et al. Genome sequence of a 45,000-year-old modern human from western Siberia. Nature 514, 445–449 (2014).
- 29.
Fu, Q. et al. A revised timescale for human evolution based on ancient mitochondrial genomes. Curr. Biol. 23, 553–559 (2013).
- 30.
van der Made, J. in The Encyclopedia of Archaeological Sciences (ed. López Varela, S. L.) 1–4 (Wiley-Blackwell, 2018).
- 31.
Guérin, C. Première biozonation du Pléistocène Européen, principal résultat biostratigraphique de l’étude des Rhinocerotidae (Mammalia, Perissodactyla) du Miocène terminal au Pléistocène supérieur d’Europe Occidentale. Geobios 15, 593–598 (1982).
- 32.
Kuhn, S. L. et al. The early Upper Paleolithic occupations at Uçağizli Cave (Hatay, Turkey). J. Hum. Evol. 56, 87–113 (2009).
- 33.
Kuhn, S. L. Upper Paleolithic raw material economies at Üçagizh cave, Turkey. J. Anthropol. Archaeol. 23, 431–448 (2004).
- 34.
Müller, U. C. et al. The role of climate in the spread of modern humans into Europe. Quat. Sci. Rev. 30, 273–279 (2011).
- 35.
Hershkovitz, I. et al. Levantine cranium from Manot Cave (Israel) foreshadows the first European modern humans. Nature 520, 216–219 (2015).
- 36.
Fu, Q. et al. An early modern human from Romania with a recent Neanderthal ancestor. Nature 524, 216–219 (2015).
- 37.
Dibble, H. L. & Lenoir, M. The Middle Paleolithic Site of Combe-Capelle Bas (France) (The University Museum Press, 1995).
- 38.
Turq, A. et al. in Les Sociétés du Paléolithique dans un Grand Sud-ouest de la France: Nouveaux Gisements, Nouveaux Résultats, Nouvelles Méthodes (eds. Jaubert, J. et al.) 83–94 (Mémoire de la Société Préhistorique Française, 2008).
- 39.
Chase, P. G., Debénath, A., Dibble, H. L. & McPherron, S. P. in The Cave of Fontéchevade: Recent Excavations and their Paleoanthropological Implications (eds Chase, P. G. et al.) 28–62 (Cambridge Univ. Press, 2009).
- 40.
Soressi, M. et al. Neandertals made the first specialized bone tools in Europe. Proc. Natl Acad. Sci. USA 110, 14186–14190 (2013).
- 41.
Richter, D. et al. The age of the hominin fossils from Jebel Irhoud, Morocco, and the origins of the Middle Stone Age. Nature 546, 293–296 (2017).
- 42.
Sandgathe, D. M., Dibble, H. L., McPherron, S. J. P. & Goldberg, P. in The Middle Paleolithic Site of Pech de l’Azé IV Cave and Karst Systems of the World (eds Dibble, H. L. et al.) 1–19 (Springer, 2018).
- 43.
Sinet-Mathiot, V. et al. Combining ZooMS and zooarchaeology to study Late Pleistocene hominin behaviour at Fumane (Italy). Sci. Rep. 9, 12350 (2019).
- 44.
Wilson, J., van Doorn, N. L. & Collins, M. J. Assessing the extent of bone degradation using glutamine deamidation in collagen. Anal. Chem. 84, 9041–9048 (2012).
- 45.
Welker, F. et al. Variations in glutamine deamidation for a Châtelperronian bone assemblage as measured by peptide mass fingerprinting of collagen. Sci. Technol. Archaeol. Res. 3, 15–27 (2017).
- 46.
Fewlass, H. et al. Pretreatment and gaseous radiocarbon dating of 40–100 mg archaeological bone. Sci. Rep. 9, 5342 (2019).
- 47.
Longin, R. New method of collagen extraction for radiocarbon dating. Nature 230, 241–242 (1971).
- 48.
Brown, T. A., Nelson, D. E., Vogel, J. S. & Southon, J. R. Improved collagen extraction by modified Longin method. Radiocarbon 30, 171–177 (1988).
- 49.
Bronk Ramsey, C., Higham, T., Bowles, A. & Hedges, R. Improvements to the pretreatment of bone at Oxford. Radiocarbon 46, 155–163 (2004).
- 50.
Brock, F., Bronk Ramsey, C. & Higham, T. Quality assurance of ultrafiltered bone dating. Radiocarbon 49, 187–192 (2007).
- 51.
Wacker, L., Němec, M. & Bourquin, J. A revolutionary graphitisation system: fully automated, compact and simple. Nucl. Instrum. Methods Phys. Res. B 268, 931–934 (2010).
- 52.
Wacker, L. et al. MICADAS: routine and high-precision radiocarbon dating. Radiocarbon 52, 252–262 (2010).
- 53.
Korlević, P., Talamo, S. & Meyer, M. A combined method for DNA analysis and radiocarbon dating from a single sample. Sci. Rep. 8, 4127 (2018).
- 54.
Wacker, L., Christl, M. & Synal, H. A. Bats: a new tool for AMS data reduction. Nucl. Instrum. Methods Phys. Res. B 268, 976–979 (2010).
- 55.
Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).
- 56.
Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).
- 57.
Skinner, M. M., Gunz, P., Wood, B. A. & Hublin, J.-J. Enamel–dentine junction (EDJ) morphology distinguishes the lower molars of Australopithecus africanus and Paranthropus robustus. J. Hum. Evol. 55, 979–988 (2008).
- 58.
Skinner, M. M., Gunz, P., Wood, B. A., Boesch, C. & Hublin, J.-J. Discrimination of extant Pan species and subspecies using the enamel–dentine junction morphology of lower molars. Am. J. Phys. Anthropol. 140, 234–243 (2009).
- 59.
Slon, V. et al. Neandertal and Denisovan DNA from Pleistocene sediments. Science 356, 605–608 (2017).
- 60.
Glocke, I. & Meyer, M. Extending the spectrum of DNA sequences retrieved from ancient bones and teeth. Genome Res. 27, 1230–1237 (2017).
- 61.
Dabney, J. & Meyer, M. Length and GC-biases during sequencing library amplification: a comparison of various polymerase-buffer systems with ancient and modern DNA sequencing libraries. Biotechniques 52, 87–94 (2012).
- 62.
Kircher, M., Sawyer, S. & Meyer, M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. 40, e3 (2012).
- 63.
Renaud, G., Stenzel, U. & Kelso, J. leeHom: adaptor trimming and merging for Illumina sequencing reads. Nucleic Acids Res. 42, e141 (2014).
- 64.
Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26, 589–595 (2010).
- 65.
Meyer, M. et al. A high-coverage genome sequence from an archaic Denisovan individual. Science 338, 222–226 (2012).
- 66.
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
- 67.
Meyer, M. et al. A mitochondrial genome sequence of a hominin from Sima de los Huesos. Nature 505, 403–406 (2014).
- 68.
Meyer, M. et al. Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos hominins. Nature 531, 504–507 (2016).
- 69.
Green, R. E. et al. A complete Neandertal mitochondrial genome sequence determined by high-throughput sequencing. Cell 134, 416–426 (2008).
- 70.
Benazzi, S. et al. The makers of the Protoaurignacian and implications for Neandertal extinction. Science 348, 793–796 (2015).
- 71.
Ermini, L. et al. Complete mitochondrial genome sequence of the Tyrolean Iceman. Curr. Biol. 18, 1687–1693 (2008).
- 72.
Gilbert, M. T. P. et al. Paleo-Eskimo mtDNA genome reveals matrilineal discontinuity in Greenland. Science 320, 1787–1789 (2008).
- 73.
Krause, J. et al. A complete mtDNA genome of an early modern human from Kostenki, Russia. Curr. Biol. 20, 231–236 (2010).
- 74.
Green, R. E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010).
- 75.
Posth, C. et al. Deeply divergent archaic mitochondrial genome provides lower time boundary for African gene flow into Neanderthals. Nat. Commun. 8, 16046 (2017).
- 76.
Prüfer, K. et al. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505, 43–49 (2014).
- 77.
Rougier, H. et al. Neandertal cannibalism and Neandertal bones used as tools in Northern Europe. Sci. Rep. 6, 29005 (2016).
- 78.
Skoglund, P. et al. Separating endogenous ancient DNA from modern day contamination in a Siberian Neandertal. Proc. Natl Acad. Sci. USA 111, 2229–2234 (2014).
- 79.
Krause, J. et al. The complete mitochondrial DNA genome of an unknown hominin from southern Siberia. Nature 464, 894–897 (2010).
- 80.
Reich, D. et al. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature 468, 1053–1060 (2010).
- 81.
Sawyer, S. et al. Nuclear and mitochondrial DNA sequences from two Denisovan individuals. Proc. Natl Acad. Sci. USA 112, 15696–15700 (2015).
- 82.
Slon, V. et al. A fourth Denisovan individual. Sci. Adv. 3, e1700186 (2017).
- 83.
Horai, S. et al. Man’s place in Hominoidea revealed by mitochondrial DNA genealogy. J. Mol. Evol. 35, 32–43 (1992).
- 84.
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
- 85.
Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).
- 86.
Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).
- 87.
Kloss-Brandstätter, A. et al. HaploGrep: a fast and reliable algorithm for automatic classification of mitochondrial DNA haplogroups. Hum. Mutat. 32, 25–32 (2011).
- 88.
Renaud, G., Slon, V., Duggan, A. T. & Kelso, J. Schmutzi: estimation of contamination and endogenous mitochondrial consensus calling for ancient DNA. Genome Biol. 16, 224 (2015).
- 89.
Bouckaert, R. et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLOS Comput. Biol. 10, e1003537 (2014).
- 90.
Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9, 772 (2012).
- 91.
Baele, G. et al. Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. Mol. Biol. Evol. 29, 2157–2167 (2012).
- 92.
Stoops, G. Guidelines for Analysis and Description of Soil and Regolith Thin Sections. 184 (Soil Science Society of America, 2003).
- 93.
Courty, M. A., Goldberg, P. & Macphail, R. Soils and Micromorphology in Archaeology 344 (Cambridge Univ. Press, 1989).